<- Back to Case Studies

How University of Lincoln Used V7 to Achieve 95% AI Model Accuracy

"We needed a tool that could do annotating and data versioning because we distribute our tools to farms, and we need to make sure that they have the same version of data for the same models."

Model accuracy
Company Industry
Yield prediction time
5 weeks
Favorite Feature
Data versioning
Forecasting strawberry yields using computer vision
Riseholme Campus
Previous Tool
Annual Business
The Challenge

Predicting the timing and yield of strawberries is critical but extremely difficult to do accurately. More than 40% of horticulture production costs are spent on picking labor, and much of the rest belongs to incorrect yield predictions. LIAT's team is using computer vision and robotics to create a system to predict strawberries' readiness and decrease the uncertainty of those forecasts by monitoring the crop responses in real-time.

Purple-blue ellipse icon
The Solution

LIAT collects image and video data from hand, vehicle or robot-mounted cameras, and uses V7 to label, identify, and track every strawberry in a greenhouse through semi-automated video annotation. They team leverages annotated data to train ML models and build robust, AI-powered yield forecasting systems able to predict yield six weeks ahead of existing systems.

Purple-blue ellipse icon
Historically, the yield prediction software would be based on season, climate & environmental data. With the technology enabled by the V7 labeling solution, we can now include more specific crop responses and bolster our yield prediction results like never before
meet the team

Meet LIAT's Team

LIAT’s mission is the development of technologies that add value or solve challenges across the food chain. In this project, they focused on the horticulture sector—starting with a small strawberry farm located near Riseholme Campus. The team uses vehicle-mounted cameras to identify and count individual fruits, estimate their weight and maturity state. This data is used to develop AI algorithms for strawberry yield forecasting.

More Customer Stories->
Training Data Needs

Monitoring strawberry maturity state

LIAT's team is working with large datasets of strawberries (and other soft berries) captured using a vehicle or robot-mounted cameras. Data is annotated using V7's labeling tools such as bounding boxes, polygons, and directional vectors.

Labeled images are then used to train AI models that have already proven to achieve state-of-art performance on real agricultural data.

LIAT's team has decided to outsource their data annotation to V7's labeling partners to speed up the process and focus on the most critical aspects of their project.

Start Auto-Annotating ->
Why V7

Switching from Labelbox to V7

The LIAT's team found V7 when looking for an alternative to Labelbox.

After giving it a try, they were pleasantly surprised to see the model accuracy going from 85% to 95% when labeling data on V7.

The team has also come to appreciate V7's advanced dataset management features, data versioning capabilities, and UX-friendly design that makes the whole process easier and more efficient.

Explore all features ->
We needed a tool that could do annotating and data versioning because we distribute our tools to farms, and we need to make sure that they have the same version of data for the same models. V7 met our needs.

From 85% to 95% model accuracy

Thanks to the successful implementation of their computer vision models, LIAT's team has improved yield prediction accuracy and prediction time from 3 to 5 weeks. This means higher profit for the farmers and reduced supply chain friction and crop waste.

Apart from that, using V7's auto-annotation tool, the team managed to improve the model's accuracy going from 85% to 95% and achieving industry-leading performance tested on on real agricultural data.

Try V7 Now->
Gain Control of Your Training Data
15,000+ ML engineers can’t be wrong