<- Back to Datasets

Arabic Handwritten Digits Dataset

MNIST-type dataset for arabic digits

Arabic Handwritten Digits Dataset

In recent years, handwritten digits recognition has been an important area due to its applications in several fields. This work is focusing on the recognition part of handwritten Arabic digits recognition that face several challenges, including the unlimited variation in human handwriting and the large public databases. The paper provided a deep learning technique that can be effectively apply to recognizing Arabic handwritten digits. LeNet-5, a Convolutional Neural Network (CNN) trained and tested MADBase database (Arabic handwritten digits images) that contain 60000 training and 10000 testing images. A comparison is held amongst the results, and it is shown by the end that the use of CNN was leaded to significant improvements across different machine-learning classification algorithms. The Convolutional Neural Network was trained and tested MADBase database (Arabic handwritten digits images) that contain 60000 training and 10000 testing images. Moreover, the CNN is giving an average recognition accuracy of 99.15%.

View this Dataset
->
Benha University
https://bu.edu.eg/en/
60000
Items
10
Classes
60000
Labels
Models using this dataset
Last updated on 
January 20, 2022
Licensed under 
Unknown
Label your own datasets on V7
Try our trial or talk to one of our experts.
Start 14 Day Trial
->
Explore Datasets
->