<- Back to Datasets

RobotriX

An extremely photorealistic indoor dataset with robot interactions

RobotriX

Enter the RobotriX, an extremely photorealistic indoor dataset designed to enable the application of deep learning techniques to a wide variety of robotic vision problems. The RobotriX consists of hyperrealistic indoor scenes which are explored by robot agents which also interact with objects in a visually realistic manner in that simulated world. Photorealistic scenes and robots are rendered by Unreal Engine into a virtual reality headset which captures gaze so that a human operator can move the robot and use controllers for the robotic hands; scene information is dumped on a per-frame basis so that it can be reproduced offline using UnrealCV to generate raw data and ground truth labels. By taking this approach we were able to generate a dataset of 38 semantic classes across 512 sequences totaling 8M stills recorded at +60 frames per second with full HD resolution. For each frame, RGB-D and 3D information is provided with full annotations in both spaces. Thanks to the high quality and quantity of both raw information and annotations, the RobotriX will serve as a new milestone for investigating 2D and 3D robotic vision tasks with large-scale data-driven techniques.

View this Dataset
->
DTIC
Task
3D Semantic Segmentation
Annotation Types
Semantic Segmentation
Items
Classes
Labels
Models using this dataset
Last updated on 
January 20, 2022
Licensed under 
MIT
Label your own datasets on V7
Try our trial or talk to one of our experts.