<- Back to Datasets

PatchCamelyon (PCam)

CIFAR10 for histopathology

PatchCamelyon (PCam)

The PatchCamelyon benchmark is a new and challenging image classification dataset. It consists of 327.680 color images (96 x 96px) extracted from histopathologic scans of lymph node sections. Each image is annoted with a binary label indicating presence of metastatic tissue. PCam provides a new benchmark for machine learning models: bigger than CIFAR10, smaller than imagenet, trainable on a single GPU.Fundamental machine learning advancements are predominantly evaluated on straight-forward natural-image classification datasets. Think MNIST, CIFAR, SVHN. Medical imaging is becoming one of the major applications of ML and we believe it deserves a spot on the list of go-to ML datasets. Both to challenge future work, and to steer developments into directions that are beneficial for this domain.We think PCam can play a role in this. It packs the clinically-relevant task of metastasis detection into a straight-forward binary image classification task, akin to CIFAR-10 and MNIST. Models can easily be trained on a single GPU in a couple hours, and achieve competitive scores in the Camelyon16 tasks of tumor detection and WSI diagnosis. Furthermore, the balance between task-difficulty and tractability makes it a prime suspect for fundamental machine learning research on topics as active learning, model uncertainty and explainability.

View this Dataset
->
Task
Medical Images
Annotation Types
Semantic Segmentation
327680
Items
Classes
327680
Labels
Models using this dataset
Last updated on 
January 20, 2022
Licensed under 
MIT
Label your own datasets on V7
Try our trial or talk to one of our experts.