Back

Objectron

Dataset of short object centeric video clips with pose annotations

The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists of 15K annotated video clips supplemented with over 4M annotated images in the following categories: bikes, books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. In addition, to ensure geo-diversity, our dataset is collected from 10 countries across five continents. Along with the dataset, we are also sharing a 3D object detection solution for four categories of objects — shoes, chairs, mugs, and cameras. These models are trained using this dataset, and are released in MediaPipe, Google's open source framework for cross-platform customizable ML solutions for live and streaming media.

Try V7 now
->
Google AI
View author website
Task
Object Detection
Annotation Types
Bounding Boxes
15000
Items
10
Classes
4000000
Labels
Models using this dataset
Last updated on 
October 31, 2023
Licensed under 
Custom
Blog
Learn about machine learning and latests advancements in AI.
Read More
Playbooks
Discover how to optimize AI for your business.
Learn more
Case Studies
Discover how V7 empowers AI industry greats.
Explore now
Webinars
Explore AI topics, gain insights, and learn from experts.
Watch now