Back

HAA500

Human-Centric Atomic Action Dataset with Curated Videos

We contribute HAA500, a manually annotated human-centric atomic action dataset for action recognition on 500 classes with over 591k labeled frames. Unlike existing atomic action datasets, where coarse-grained atomic actions were labeled with action-verbs, e.g., "Throw", HAA500 contains fine-grained atomic actions where only consistent actions fall under the same label, e.g., "Baseball Pitching" vs "Free Throw in Basketball", to minimize ambiguities in action classification. HAA500 has been carefully curated to capture the movement of human figures with less spatio-temporal label noises to greatly enhance the training of deep neural networks. The advantages of HAA500 include: 1) human-centric actions with a high average of 69.7% detectable joints for the relevant human poses; 2) each video captures the essential elements of an atomic action without irrelevant frames; 3) fine-grained atomic action classes. Our extensive experiments validate the benefits of human-centric and atomic characteristics of HAA, which enables the trained model to improve prediction by attending to atomic human poses. We detail the HAA500 dataset statistics and collection methodology, and compare quantitatively with existing action recognition datasets.

Try V7 now
->
1HKUST
View author website
Task
Event Detection
Annotation Types
Bounding Boxes
591000
Items
500
Classes
591000
Labels
Models using this dataset
Last updated on 
October 31, 2023
Licensed under 
Research Only
Blog
Learn about machine learning and latests advancements in AI.
Read More
Playbooks
Discover how to optimize AI for your business.
Learn more
Case Studies
Discover how V7 empowers AI industry greats.
Explore now
Webinars
Explore AI topics, gain insights, and learn from experts.
Watch now